الثلاثاء

نشأة محركات الديزل واستخدامها

نشأة محركات الديزل واستخدامها

تعدّ محطات التوليد التي تعمل بالديزل مناسبة للقدرات الصغيرة والمتوسطة. وتستخدم محطة قدرة مركزية لتغذية الأحمال الصغيرة، كما تستخدم محطات تبادلية لمحطات التوليد البخارية، وتستخدم المحطات التي تعمل بالديزل عندما يكون سعر الوقود رخيص نسبياً، وعندما تكون خطوط الكهرباء غير متيسرة. وتصل سعات المحطات التي تعمل بالديزل إلى 5 ميجاوات.

ويُستفاد بمحرك الاحتراق الداخلي مباشرة من الطاقة المختزنة في الوقود لأداء شغل. وتستخلص أنواع الوقود المستخدمة لإدارة محركات الاحتراق الداخلي من الزيوت المعدنية أساساً، وينبغي أن يكون وقود محركات الاحتراق الداخلي سهل الاشتعال، إما فورياً، أو بعد قدر محدد من الارتفاع في درجة الحرارة. وفي عملية الاحتراق تتكون غازات تتمدد بسرعة وفي كل الاتجاهات. ويستفاد من هذه الخاصية إلى أقصى حد في المحرك لتحويل الطاقة الكيمائية المختزنة في الوقود إلى طاقة ميكانيكية عن طريق الاحتراق .

تُصنف آلة الاحتراق الداخلي كالآتي:

1. بالنسبة لطرق الإشعال:

أ. إشعال بالشرارة.

ب. إشعال بالضغط.

في محرك الإشعال بالشرارة يُخلط الهواء مع الوقود، ويضغط المخلوط ويشتعل في نهاية مشوار الضغط بشرارة كهربائية. وتتراوح نسبة الضغط من خمسة إلى ثمانية، وفي محرك الإشعال بالضغط، كما في محرك الديزل، يضغط الهواء بنسبة تتراوح من 12 إلى 20 ونتيجة ارتفاع درجة حرارة الهواء المضغوط قرب نهاية شوط الانضغاط، يحقن الوقود من خلال فونية الحقن إلى الهواء الساخن في أسطوانة المحرك فيحترق الوقود. وتتمدد الغازات المحترقة وتؤدي شغلاً على المكبس، وبالتالي على الحمل المتصل بالمحرك. وتخرج عوادم الغاز بعد ذلك من الأسطوانة وتتكرر هذه الدورة.

2. دورة العمل، وتصنيف دورة العمل كالآتي:

أ. مُحرك ثنائي الأشواط.

ب. مُحرك رباعي الأشواط.

3. عدد الأسطوانات:

يمكن أن تحتوي آلة الاحتراق الداخلي على أكثر من أسطوانة مثل أربعة، أو ستة، أو ثمانية.... الخ. ويحدد عدد الاسطوانات قدرة الخرج المطلوبة، وكلما زادت عدد الاسطوانات، زاد الوزن، والتكاليف، ومساحة المكان، وعدد الأجزاء العاملة بالمحرك. ويتحدد حجم المحرك بقطر الأسطوانة وطول مشوار الأسطوانة.

4. ترتيب الأسطوانات:

تأخذ شكل الأسطوانات في محرك الاحتراق الداخلي شكل قطري، أو شكل أفقي، أو شكل خطي.

5. السرعة، يُصنف المحرك حسب السرعة كالآتي:

أ. سرعة منخفضة حتى 350 دورة في الدقيقة.

ب. سرعة متوسطة من 350 إلى 1000 دورة في الدقيقة.

ج. سرعة عالية 1000 دورة في الدقيقة فأكثر.

6. طرق تبريد الاسطوانة

يُصنف المحرك حسب طرق التبريد إلى نوعين:

أ. تبريد الهواء.

ب. تبريد الماء.

محرك الديزل ذو الأربعة أشواط

تعمل محركات الديزل على أساس الدورة رباعية الأشواط أو ثنائية الأشواط، والمسافة التي يتحركها الكباس من النقطة الميتة السفلى إلى النقطة الميتة العليا تساوي نصف لفة من لفات العمود المرفقي، وتتكون الأشواط الأربعة من الآتي:

1. شوط السحب.

2. شوط الانضغاط.

3. شوط التمدد "الاحتراق".

4. شوط العادم.

ويستفاد في محرك الاحتراق الداخلي مباشرة من الطاقة المختزنة في الوقود لأداء شغل. وتستخلص أنواع الوقود المستخدمة لإدارة محركات الاحتراق الداخلي من الزيوت المعدنية أساساً، وينبغي أن يكون وقود محركات الاحتراق الداخلي سهل الاشتعال، إما فورياً، أو بعد قدر محدد من الارتفاع في درجة الحرارة. وفي عملية الاحتراق تتكون غازات تتمدد بسرعة وفي كل الاتجاهات. ويستفاد من هذه الخاصية إلى أقصى حد في المحرك، لتحويل الطاقة الكيمائية المختزنة في الوقود إلى طاقة ميكانيكية، عن طريق الاحتراق .

شوط السحب

يتحرك المكبس في اتجاه النقطة الميتة السفلى، وحينئذ يكون السحب مفتوحاً، ونتيجة لضغط الهواء المحيط المرتفع نسبياً فإن الهواء الجديد يمر إلى غرفة الاحتراق. ويظل العادم في هذه الحالة مغلقاً. وفي هذه الأثناء يكون عمود المرفق قد أتم نصف لفة من لفاته.

شوط الانضغاط

يتحرك الكباس إلى أعلى في اتجاه النقطة الميتة العليا. ويكون الصمامان مغلقين، بحيث ينضغط الهواء المحبوس في غرفة الاحتراق، وباكتمال الشوط الثاني يكون عمود المرفق قد أتم لفة كاملة من لفاته.

شوط التمدد "الاحتراق"

يبدأ حقن الوقود قبل وصول الكباس إلى النقطة الميتة العليا. ويخلط الوقود المحقون بالهواء الساخن المنضغط فيشتعل الخليط ذاتياً، نتيجة درجة الحرارة المرتفعة الناشئة من الانضغاط، وتتمدد الغازات العادمة دافعة أمامها الكباس إلى أسفل، وباكتمال الشوط الثالث يكون العمود المرفق قد أتم لفة ونصف لفة.

شوط العادم

يتحرك الكباس في اتجاه النقطة الميتة العليا، في حين يكون صمام العادم مفتوحاً، وتنصرف الغازات الموجودة في غرفة الاحتراق عن طريق صمام العادم، وباكتمال الشوط الرابع يكون عمود المرفق قد أتم لفتين كاملتين.

المحركات ثنائية الأشواط

تُبنى فكرة المحرك ثنائي الأشواط على دوران عمود المرفق لفة واحدة، ويتم السحب والانضغاط في شوط واحد، بينما التمدد والعادم في الشوط الثاني للكباس.

شوط السحب والانضغاط

يتحرك الكباس إلى النقطة الميتة العليا ضاغطاً الخليط الموجود في غرفة الاحتراق، وفي الوقت نفسه يكشف الطرف السفلي للكباس إحدى فتحات السحب، ويُنشأ تخلخل في علبة المرفق نتيجة حركة الكباس إلى أعلى بحيث يتمكن الهواء الجديد من الدخول. وفي هذه الحالة يكون العمود المرفق قد أتم نصف لفة من لفاته.

شوط التمدد والعادم

قبل وصول الكباس إلى النقطة الميتة العليا مباشرة، يُشعل الخليط بواسطة الشرارة المنبعثة من شمعة البوجيه. ويُدفع الكباس إلى أسفل نتيجة ضغط الغازات المتمددة عليه. وبانزلاق الكباس إلى أسفل فإنه يضغط الخليط في علبة المرفق، كاشفاً في الوقت نفسه فتحات الانتقال. وبالتالي يدخل الوقود المخلوط إلى غرفة الاحتراق فيملؤها، في حين تنصرف الغازات المحترقة المضغوطة عن طريق فتحة العادم. وفي هذه الحالة يكون عمود المرفق قد أتم لفة كاملة.

محركات الديزل ثنائية الأشواط

يتميز محرك الديزل ثنائي الأشواط عن محرك البنزين بصمام عادم يجري التحكم فيه بواسطة كامة. ويتكون المحرك عادة من ثلاث إلى سبع أسطوانات، والحجم المُزاح فيه 1.5 لتر لكل أسطوانة في المتوسط.ونظراً لأن لهذه المحركات خصائص ممتازة، فيما يتعلق ببدء حركتها، حتى في درجات الحرارة المنخفضة؛ فإنها تحقن بطرق الحقن المباشر بضغط يتراوح بين 175 ضغط جوي وبين 230 ضغط جوي.

مكونات المحرك

للمحرك تصميمات مختلفة، والمحركات رباعية الأسطوانات قد تكون أسطواناتها رأسية وفي صف واحد، أو مائلة وتتخذ شكل الحرف V، وتصمم المحركات ذات الأسطوانات الثلاث أو الأربع، أو المتعددة، بحيث تكون أسطواناتها عادة في صف واحد.

وقد تكون أسطوانات منفصلة عن بعضها البعض أو متحدة في كتلة واحدة تُسمى "كتلة الأسطوانة". ويستخدم ترتيب الأسطوانات المنفصلة عن بعضها البعض في محركات تبريد الهواء.

الوحدات الرئيسية في المحرك

1. كتلة الأسطوانة:

أ.

المجموعة المرفقية، وتتكون من الآتي:

1.

الكباس.

2.

ذراع التوصيل.

3.

العمود المرفقي.

ب.

مجموعة توقيت الحركة، وتتكون من الآتي:

1.

عمود الكامات.

2.

الصمامات.

3.

آلية تشغيل الأسطوانات.

ج.

المجموعة التكميلية، وتتكون من الآتي:

1.

معدات حقن الوقود.

2.

دورة الوقود.

3.

مرشح الهواء.

4.

دورة التزييت.

5.

دورة التبريد.


نشأة محركات الديزل واستخدامها

نشأة محركات الديزل واستخدامها

تعدّ محطات التوليد التي تعمل بالديزل مناسبة للقدرات الصغيرة والمتوسطة. وتستخدم محطة قدرة مركزية لتغذية الأحمال الصغيرة، كما تستخدم محطات تبادلية لمحطات التوليد البخارية، وتستخدم المحطات التي تعمل بالديزل عندما يكون سعر الوقود رخيص نسبياً، وعندما تكون خطوط الكهرباء غير متيسرة. وتصل سعات المحطات التي تعمل بالديزل إلى 5 ميجاوات.

ويُستفاد بمحرك الاحتراق الداخلي مباشرة من الطاقة المختزنة في الوقود لأداء شغل. وتستخلص أنواع الوقود المستخدمة لإدارة محركات الاحتراق الداخلي من الزيوت المعدنية أساساً، وينبغي أن يكون وقود محركات الاحتراق الداخلي سهل الاشتعال، إما فورياً، أو بعد قدر محدد من الارتفاع في درجة الحرارة. وفي عملية الاحتراق تتكون غازات تتمدد بسرعة وفي كل الاتجاهات. ويستفاد من هذه الخاصية إلى أقصى حد في المحرك لتحويل الطاقة الكيمائية المختزنة في الوقود إلى طاقة ميكانيكية عن طريق الاحتراق .

تُصنف آلة الاحتراق الداخلي كالآتي:

1. بالنسبة لطرق الإشعال:

أ. إشعال بالشرارة.

ب. إشعال بالضغط.

في محرك الإشعال بالشرارة يُخلط الهواء مع الوقود، ويضغط المخلوط ويشتعل في نهاية مشوار الضغط بشرارة كهربائية. وتتراوح نسبة الضغط من خمسة إلى ثمانية، وفي محرك الإشعال بالضغط، كما في محرك الديزل، يضغط الهواء بنسبة تتراوح من 12 إلى 20 ونتيجة ارتفاع درجة حرارة الهواء المضغوط قرب نهاية شوط الانضغاط، يحقن الوقود من خلال فونية الحقن إلى الهواء الساخن في أسطوانة المحرك فيحترق الوقود. وتتمدد الغازات المحترقة وتؤدي شغلاً على المكبس، وبالتالي على الحمل المتصل بالمحرك. وتخرج عوادم الغاز بعد ذلك من الأسطوانة وتتكرر هذه الدورة.

2. دورة العمل، وتصنيف دورة العمل كالآتي:

أ. مُحرك ثنائي الأشواط.

ب. مُحرك رباعي الأشواط.

3. عدد الأسطوانات:

يمكن أن تحتوي آلة الاحتراق الداخلي على أكثر من أسطوانة مثل أربعة، أو ستة، أو ثمانية.... الخ. ويحدد عدد الاسطوانات قدرة الخرج المطلوبة، وكلما زادت عدد الاسطوانات، زاد الوزن، والتكاليف، ومساحة المكان، وعدد الأجزاء العاملة بالمحرك. ويتحدد حجم المحرك بقطر الأسطوانة وطول مشوار الأسطوانة.

4. ترتيب الأسطوانات:

تأخذ شكل الأسطوانات في محرك الاحتراق الداخلي شكل قطري، أو شكل أفقي، أو شكل خطي.

5. السرعة، يُصنف المحرك حسب السرعة كالآتي:

أ. سرعة منخفضة حتى 350 دورة في الدقيقة.

ب. سرعة متوسطة من 350 إلى 1000 دورة في الدقيقة.

ج. سرعة عالية 1000 دورة في الدقيقة فأكثر.

6. طرق تبريد الاسطوانة

يُصنف المحرك حسب طرق التبريد إلى نوعين:

أ. تبريد الهواء.

ب. تبريد الماء.

محرك الديزل ذو الأربعة أشواط

تعمل محركات الديزل على أساس الدورة رباعية الأشواط أو ثنائية الأشواط، والمسافة التي يتحركها الكباس من النقطة الميتة السفلى إلى النقطة الميتة العليا تساوي نصف لفة من لفات العمود المرفقي، وتتكون الأشواط الأربعة من الآتي:

1. شوط السحب.

2. شوط الانضغاط.

3. شوط التمدد "الاحتراق".

4. شوط العادم.

ويستفاد في محرك الاحتراق الداخلي مباشرة من الطاقة المختزنة في الوقود لأداء شغل. وتستخلص أنواع الوقود المستخدمة لإدارة محركات الاحتراق الداخلي من الزيوت المعدنية أساساً، وينبغي أن يكون وقود محركات الاحتراق الداخلي سهل الاشتعال، إما فورياً، أو بعد قدر محدد من الارتفاع في درجة الحرارة. وفي عملية الاحتراق تتكون غازات تتمدد بسرعة وفي كل الاتجاهات. ويستفاد من هذه الخاصية إلى أقصى حد في المحرك، لتحويل الطاقة الكيمائية المختزنة في الوقود إلى طاقة ميكانيكية، عن طريق الاحتراق .

شوط السحب

يتحرك المكبس في اتجاه النقطة الميتة السفلى، وحينئذ يكون السحب مفتوحاً، ونتيجة لضغط الهواء المحيط المرتفع نسبياً فإن الهواء الجديد يمر إلى غرفة الاحتراق. ويظل العادم في هذه الحالة مغلقاً. وفي هذه الأثناء يكون عمود المرفق قد أتم نصف لفة من لفاته.

شوط الانضغاط

يتحرك الكباس إلى أعلى في اتجاه النقطة الميتة العليا. ويكون الصمامان مغلقين، بحيث ينضغط الهواء المحبوس في غرفة الاحتراق، وباكتمال الشوط الثاني يكون عمود المرفق قد أتم لفة كاملة من لفاته.

شوط التمدد "الاحتراق"

يبدأ حقن الوقود قبل وصول الكباس إلى النقطة الميتة العليا. ويخلط الوقود المحقون بالهواء الساخن المنضغط فيشتعل الخليط ذاتياً، نتيجة درجة الحرارة المرتفعة الناشئة من الانضغاط، وتتمدد الغازات العادمة دافعة أمامها الكباس إلى أسفل، وباكتمال الشوط الثالث يكون العمود المرفق قد أتم لفة ونصف لفة.

شوط العادم

يتحرك الكباس في اتجاه النقطة الميتة العليا، في حين يكون صمام العادم مفتوحاً، وتنصرف الغازات الموجودة في غرفة الاحتراق عن طريق صمام العادم، وباكتمال الشوط الرابع يكون عمود المرفق قد أتم لفتين كاملتين.

المحركات ثنائية الأشواط

تُبنى فكرة المحرك ثنائي الأشواط على دوران عمود المرفق لفة واحدة، ويتم السحب والانضغاط في شوط واحد، بينما التمدد والعادم في الشوط الثاني للكباس.

شوط السحب والانضغاط

يتحرك الكباس إلى النقطة الميتة العليا ضاغطاً الخليط الموجود في غرفة الاحتراق، وفي الوقت نفسه يكشف الطرف السفلي للكباس إحدى فتحات السحب، ويُنشأ تخلخل في علبة المرفق نتيجة حركة الكباس إلى أعلى بحيث يتمكن الهواء الجديد من الدخول. وفي هذه الحالة يكون العمود المرفق قد أتم نصف لفة من لفاته.

شوط التمدد والعادم

قبل وصول الكباس إلى النقطة الميتة العليا مباشرة، يُشعل الخليط بواسطة الشرارة المنبعثة من شمعة البوجيه. ويُدفع الكباس إلى أسفل نتيجة ضغط الغازات المتمددة عليه. وبانزلاق الكباس إلى أسفل فإنه يضغط الخليط في علبة المرفق، كاشفاً في الوقت نفسه فتحات الانتقال. وبالتالي يدخل الوقود المخلوط إلى غرفة الاحتراق فيملؤها، في حين تنصرف الغازات المحترقة المضغوطة عن طريق فتحة العادم. وفي هذه الحالة يكون عمود المرفق قد أتم لفة كاملة.

محركات الديزل ثنائية الأشواط

يتميز محرك الديزل ثنائي الأشواط عن محرك البنزين بصمام عادم يجري التحكم فيه بواسطة كامة. ويتكون المحرك عادة من ثلاث إلى سبع أسطوانات، والحجم المُزاح فيه 1.5 لتر لكل أسطوانة في المتوسط.ونظراً لأن لهذه المحركات خصائص ممتازة، فيما يتعلق ببدء حركتها، حتى في درجات الحرارة المنخفضة؛ فإنها تحقن بطرق الحقن المباشر بضغط يتراوح بين 175 ضغط جوي وبين 230 ضغط جوي.

مكونات المحرك

للمحرك تصميمات مختلفة، والمحركات رباعية الأسطوانات قد تكون أسطواناتها رأسية وفي صف واحد، أو مائلة وتتخذ شكل الحرف V، وتصمم المحركات ذات الأسطوانات الثلاث أو الأربع، أو المتعددة، بحيث تكون أسطواناتها عادة في صف واحد.

وقد تكون أسطوانات منفصلة عن بعضها البعض أو متحدة في كتلة واحدة تُسمى "كتلة الأسطوانة". ويستخدم ترتيب الأسطوانات المنفصلة عن بعضها البعض في محركات تبريد الهواء.

الوحدات الرئيسية في المحرك

1. كتلة الأسطوانة:

أ.

المجموعة المرفقية، وتتكون من الآتي:

1.

الكباس.

2.

ذراع التوصيل.

3.

العمود المرفقي.

ب.

مجموعة توقيت الحركة، وتتكون من الآتي:

1.

عمود الكامات.

2.

الصمامات.

3.

آلية تشغيل الأسطوانات.

ج.

المجموعة التكميلية، وتتكون من الآتي:

1.

معدات حقن الوقود.

2.

دورة الوقود.

3.

مرشح الهواء.

4.

دورة التزييت.

5.

دورة التبريد.


الاثنين

steam cycle) (cobmind cycle)


Power plants generate electrical power by using fuels like coal, oil or natural gas. A simple power plant consists of a boiler, turbine, condenser and a pump. Fuel, burned in the boiler and superheater, heats the water to generate steam. The steam is then heated to a superheated state in the superheater. This steam is used to rotate the turbine which powers the generator. Electrical energy is generated when the generator windings rotate in a strong magnetic field. After the steam leaves the turbine it is cooled to its liquid state in the condenser. The liquid is pressurized by the pump prior to going back to the boiler A simple power plant is described by a Rankine Cycle.
RANKINE CYCLE

Saturated or superheated steam enters the turbine at state 1, where it expands isentropically to the exit pressure at state 2. The steam is then condensed at constant pressure and temperature to a saturated liquid, state 3. The heat removed from the steam in the condenser is typically transferred to the cooling water. The saturated liquid then flows through the pump which increases the pressure to the boiler pressure (state 4), where the water is first heated to the saturation temperature, boiled and typically superheated to state 1. Then the whole cycle is repeated.


Typical Modifications REHEAT

When steam leaves the turbine, it is typically wet. The presense of water causes erosion of the turbine blades. To prevent this, steam is extracted from high pressure turbine (state 2), and then it is reheated in the boiler (state 2') and sent back to the low pressure turbine.
REGENERATION

Regeneration helps improve the Rankine cycle efficiency by preheating the feedwater into the boiler. Regeneration can be achieved by open feedwater heaters or closed feedwater heaters. In open feedwater heaters, a fraction of the steam exiting a high pressure turbine is mixed with the feedwater at the same pressure. In closed system, the steam bled from the turbine is not directly mixed with the feedwater, and therefore, the two streams can be at different pressures

Combined Cycle Plants

The combined-cycle unit combines the Rankine (steam turbine) and Brayton (gas turbine) thermodynamic cycles by using heat recovery boilers to capture the energy in the gas turbine exhaust gases for steam production to supply a steam turbine as shown in the figure "Combined-Cycle Cogeneration Unit". Process steam can be also provided for industrial purposes.


Fossil fuel-fired (central) power plants use either steam or combustion turbines to provide the mechanical power to electrical generators. Pressurized high temperature steam or gas expands through various stages of a turbine, transferring energy to the rotating turbine blades. The turbine is mechanically coupled to a generator, which produces electricity.
Steam Turbine Power Plants:
Steam turbine power plants operate on a Rankine cycle. The steam is created by a boiler, where pure water passes through a series of tubes to capture heat from the firebox and then boils under high pressure to become superheated steam. The heat in the firebox is normally provided by burning fossil fuel (e.g. coal, fuel oil or natural gas). However, the heat can also be provided by biomass, solar energy or nuclear fuel. The superheated steam leaving the boiler then enters the steam turbine throttle, where it powers the turbine and connected generator to make electricity. After the steam expands through the turbine, it exits the back end of the turbine, where it is cooled and condensed back to water in the surface condenser. This condensate is then returned to the boiler through high-pressure feedpumps for reuse. Heat from the condensing steam is normally rejected from the condenser to a body of water, such as a river or cooling tower.
Steam turbine plants generally have a history of achieving up to 95% availability and can operate for more than a year between shutdowns for maintenance and inspections. Their unplanned or forced outage rates are typically less than 2% or less than one week per year.
Modern large steam turbine plants (over 500 MW) have efficiencies approaching 40-45%. These plants have installed costs between $800 and$2000/kW, depending on environmental permitting requirements.





hydrogen Basics-Internal Combustion Engines

Hydrogen has a high specific energy, high flame speed, wide range of flammability, and clean burning characteristics which suggest a possibility of high performance in internal combustion engines (ICE). These attributes have been realized for more than half a century since the onset of hydrogen engine development. In the early 1990s, FSEC conducted research on using hydrogen in an ICE. This work resulted in the development of a mixed fuel called HYTEST. Today, automobile manufacturers and DOE continue to work on hydrogen-powered ICEs.

Picture of Hydrogen/natural gas fueling (HYTEST fuel) of Ford Ranger, FSEC H2 Lab.
Hydrogen/natural gas fueling (HYTEST fuel) of Ford Ranger, FSEC H2 Lab
(Photo: S. Spencer)
There are four basic issues regarding hydrogen-fueled engines and vehicles: engine backfire and susceptibility of hydrogen to surface ignition, somewhat reduced engine power, high nitric oxide (NOx) emissions, and the problem of on-board storage of the fuel and safety. Although partial solutions have been found to most of these problems, there still is no general consensus of the best method to finally resolve all of these issues.

As far as the performance of a hydrogen engine is concerned, its limit of flammability in air is the most important factor. Hydrogen's low lean limit of flammability provides an opportunity to use the lean-burn engine (LBE) concept with hydrogen engines quite successfully. The LBE concept refers to engine operation that is leaner (higher air to fuel mass ratio) than stoichiometric (chemically correct air-fuel ratio). The amount of work done during the expansion process in a lean-burn engine is relatively large (due to lower cycle temperature), resulting in a proportionally higher thermal efficiency.

The LBE concept with hydrogen further facilitates and promotes the use of so-called "mixture regulation" or "quality governing" at light engine loads. Unlike gasoline-fueled engines that require throttling at lower engine loads, hydrogen-fueled engines can be operated at reduced power levels by limiting only the rate at which fuel is supplied, without restricting the flow rate of the intake air. Therefore, engine "pumping losses" which occur when the throttle valve is used are completely avoided. Hydrogen's high auto-ignition temperature provides an opportunity to operate hydrogen-fueled engines at higher compression ratios than those normally used with gasoline engines. The result is a further gain in indicated thermal efficiency.

Impediments to hydrogen utilization in an ICE are caused by its low ignition energy and wide limits of flammability. These make hydrogen engines particularly prone to pre-ignition. The situation is further aggravated by hydrogen's high flame speed. Pre-ignition leads to harmful flashbacks into the carburetor and rough operation and is believed to be due to the development of surface "hot spots." Induction ignition can occur due to excessive temperatures of both combustion chamber components and small surface deposits or suspended particles. Hydrogen's exceptionally low ignition energy requires that the average temperature prevailing within the combustion space during induction be sufficiently low so that the formation of hot spots is avoided. This requires appropriate cooling of the cylinder head, piston, valves, combustion chamber wall, and the use of cold spark plugs (non-platinum tipped spark plugs). One way to reduce the effect of combustion chamber hot spots on the pre-ignition of a fresh charge is to use thermal dilution techniques. The unusual heat and mass transfer characteristics of hydrogen make it almost necessary to rethink the combustion chamber and cooling system design so that hydrogen's unique attributes can be capitalized on to full advantage.

Another important issue regarding the engine operation, especially with near stoichiometric hydrogen and air mixtures, is the extent of NOx formation. This problem has been dealt with using any type of thermal dilution of charge by utilizing excess air (lean burn concept), water injection into the cylinder, and exhaust gas recirculation. The collective findings of many researchers appear to indicate that, in order to take full advantage of the lean burn concept and hydrogen's wide flammability limits to reduce NOx emissions to acceptable levels, it would be necessary to confine engine operation to equivalence ratios of approximately 0.65 or lower. It is also possible to achieve low levels of NOx emission with hydrogen engines utilizing internal mixture formation by DCI or port injection. In the internal mixture formation technique, hydrogen is admitted into the combustion chamber directly and under pressure. This approach has required the development of a high-pressure cryogenic injection system as well as salient combustion chamber designs which promote turbulence and rapid mixing of hydrogen and air in the cylinder. It appears that high-power, lean burn hydrogen engines that also produce minimal NOx emission are feasible.

FSEC staff have conducted major work on the use of hydrogen and natural gas as a fuel for ICEs by examining the prospects of mixing hydrogen with natural gas to improve engine performance and lower engine emissions. Researchers began the work by blending low amounts of hydrogen (5 to 10 percent) with natural gas, but results showed that mixtures of more than 20 percent hydrogen would be required to achieve the desired emission reductions.

This work focused on a mixture of hydrogen-enriched natural gas that allowed for an extended “lean burn limit” and thus lower engine emissions without using a catalytic converter. During this work, FSEC completed a series of tests on a 30-percent-plus hydrogen-enriched methane mixture, which was used to run a 350-cubic-inch V8 engine. Results showed that nitrogen oxide emissions could be lowered by approximately 90 percent in comparison with a gasoline-powered car. FSEC named the hydrogen-methane mixture HYTEST (any hydrogen-methane fuel with hydrogen content greater than 20 percent) and received a patent on the fuel.

For additional technical information on hydrogen ICEs, see: http://www.eere.energy.gov/hydrogenandfuelcells/tech_validation/pdfs/fcm03r0.pdf.


نقلا عن موقع http://www.fsec.ucf.edu

الهيدروجين كمصدر للطاقه

بسم الله الرحمن الرحيم
مما لا شك فيه ان الطاقه الان اصبحت شيئا مهما فى حياتنا وبالاخص المصادر الطاقه النظيفه
ولهذا فان الاتجاه الى استخدام الهيدروجين هو اسلوب جديد وصوره لمستقبل لمصدر بديل للطاقه
سواء فى انتاج الطاقه الكهربيه او استخدامه فى غرف الاحتراق الداخلى
ولهذا جئت اليكم بهذا الموضوع نقلا عن ذالك الموقع
http://www.cnr.ac.ma
وأرجو ان يوفقنا الله الى ما هو خير
حسام الدين محمد
هندسة شبين الكوم
In the name of God the Merciful
There is no doubt that the energy was now something important in our lives, especially the sources of clean energy
That is the trend to use hydrogen is the new style and a picture of the future of alternative source of energy
Whether to produce electric energy or used in internal combustion chambers
That is why I come to you with this topic, quoting piece Site
http://www.cnr.ac.ma
I ask God to guide us to what is good
Hossam El Din Mohamed
Faculty of Engineering shebin Kom

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

الهيدروجين وخلايا الاحتراق، صيغة مستقبلية

لإنتاج الطاقة الكهربائية بكفاءة عالية وتوافق بيئي

رشيد بنشريفة، ، ادريس الزجلي وعبد العزيز بنونة

وحدث بحث: تقنيات واقتصاد الطاقات المتجددة

المركز الوطني للبحث العلمي والتقني

52، شارع عمر ابن الخطاب أكدال، الرباط

ملخص

من المنتظر أن يلعب الهيدروجين دورا رياديا في مجال الطاقة في المستقبل ، ولاسيما وأن المواد الأولية لإنتاجه غزيرة، ودائرة إنتاجه واستعماله تمتاز بتوافق عالي مع شروط التنمية المستدامة. وبإمكان نظام طاقي يعتمد على الهيدروجين كحامل طاقي أن يجعل المصادر الطاقية المتجددة في متناول المستهلك. والتطور التكنولوجي المتزايد الذي نتابعه في مجالات إنتاج الهيدروجين وأساليب تخزينه وطرق نقله وميادين استعماله سيفرضه حتما على نطاق واسع. و يتحلى الهيدروجين بخصائص فيزيائية وكيميائية ممتازة تمنحه صفة المحروق المستقبلي الشامل.

والتقدم الحاصل بالموازاة في تطوير خلايا الاحتراق دليل على إمكانية تجاوز معضلة خزن وتوزيع الطاقة من أصل متجدد. تُنتج هذه الخلايا الطاقة الكهربائية مباشرة بتحويل الطاقة الكيميائية بكفاءة عالية. زيادة على أن مردود اشتغال الخلايا قد يصل إلى 60 في المائة فهي تمتاز بمحافظتها على البيئة ومرونة عالية في الاستعمال. ويمكن لبعض هذه الخلايا وخاصة التي تعمل على درجة حرارية مرتفعة أن تستعمل محروقات متنوعة وذلك لتوفرها على قدرة ذاتية لاستخلاص الهيدروجين مباشرة من هذه المحروقات. نقترح في هذه الورقة تقديم الهيدروجين كحامل طاقي مستقبلي، وتقديم واقع تكنولوجيا خلايا الاحتراق.

مقدمة

لقد حقق الإنسان عبر تاريخه الطاقي تآلف بينه وبين المجال الطاقي المتوفر لديه والذي يعيش منه على مرحلتين كبيرتين: تعرف الأولى بطول مدة استغلاله الطاقات المتجددة من حرارة الشمس والرياح وجريان المياه وخاصة طاقة الكتلة العضوية. وظلت القدرة الطاقية المتوفرة والتي يتحكم فيها الإنسان خلال هذه المرحلة جد ضعيفة، تحد من طموحاته وقدراته في مسيرة التقدم ومسيرة تطوير وتنمية مجتمعه. وبدأت المرحلة الثانية نهاية القرن الثامن عشر مع بداية الثورة الصناعية، وصاحب وتيرة التصنيع خلال هذه الفترة استنزاف سريع للمخزون الطاقي الاحفوري. ومما لا شك فيه، أن استهلاك الطاقة بالشراهة التي كانت لازالت تستفحل إلى يومنا هذا، سيحدث أضرارا بالغة في التوازن الإنساني والطبيعي وسيتسبب في المزيد من الكوارث الإيكولوجية وغيرها التي باتت تهدد سكان الأرض والإنسانية.

أمام هذا الوضع الحالي الذي لا تحسد عليه طبيعتنا التي تطلب منها تكوين الرصيد الطاقي الاحفوري عشرات الملايين من السنين، وأمام المشاكل البيئية الناتجة عن الاستعمال المفرط وغير المسئول لهذه المصادر، تجد الإنسانية نفسها لأول مرة في تاريخها أمام تحديات جسام تفرض عليها اتخاذ بسرعة وحزم القرارات الصائبة لتصحيح من جديد مسارها الطاقي. مجال التفكير واتخاذ القرارات شاسع طبعا، ولكن ستظل في كل الأحوال القرارات التي ستضمن تواجد ملائم للإنسان في بيئته وطبيعته التي فطره الله عليها هي القرارات الصائبة.

فمن المنتظر أن تعود الإنسانية من جديد إلى اعتماد المصادر المتجددة : الشمس ( الطاقة الحرارية والطاقة الإشعاعية والرياح والأمواج) والأرض بحرارتها الباطنية (الطاقة الجيوحرارية) والقمر بتفاعله مع الأرض (طاقة الجاذبية والمد والجزر في البحار والمحيطات)، وتحل محل المصادر الاحفورية، وما التقدم الظاهر الذي أحرزتاه طاقة الرياح وطاقة الكهرضوئية إلا دليل واضح وضمانات مقدمة مسبقا على أن العصر الشمسي في بداية طريقه للقيام بدوره المنتظر(الرسم 1). ويقدم الرسم 2 التوقعات لدور الطاقات المتجددة في إنتاج الكهرباء في المستقبل.

الرسم 1 : تطور القدرات الريحية الكهرضوئية في العالم

الرسم 2: دور الطاقات المتجددة في إنتاج الكهرباء في المستقبل

وحسب عدد من مؤسسات البحث والتنمية وعدد كبير من الصناعيين، الهيدروجين هو المرشح الذي سيلعب دورا رياديا في الانتقال من العصر الاحفوري الحالي إلى العصر الشمسي. وتضافر من جهة غزارة المادة الأولية لإنتاج الهيدروجين ونعني بهذا الماء، ومن جهة أخرى الخصائص الفيزيائية والكيماوية التي يمتاز بها هذا الغاز سواء عند إنتاجه أو استعماله، سيجعلان منه الحامل الطاقي الشامل. والجهود المبذولة في مجالي البحث والتنمية سيسمحان بكل تأكيد من خفض كلفة وتحسين كفاءة إنتاج الهيدروجين وكذلك نقله وخزنه وتوزيعه (الرسم 3).

الرسم 3: دائرة إنتاج واستعمال الحامل الطاقي الهيدروجين

الخصائص الفيزيائية والكيماوية للهيدروجين

الهيدروجين غاز لا رائحة له ولا لون له وليس بغاز سام. له خصائص فيزيائية وكيميائية ممتازة تُخوِّلُه من أن يكون الوقود الشامل. في حين أن غاز الهيدروجين لا يوجد حرا في الطبيعة فإن ذرة هدروجين متوفرة بغزارة فائقة في الطبيعة، فهو العنصر الرئيسي في تركيبة الكون بحيث تصل نسبته إلى 90 في المائة، و66 في المائة من مياه البحار مُتكوِّنة من ذرات الهيدروجين و63 في المائة من جسم الإنسان يتكون من ذرات الهيدروجين. يقدم الجدول 1 بعض خصائص الهيدروجين مع مقارنتها بمثيلاتها الميتان والبنزين. يمتاز الهدروجين بقدرته الحرارية الكتلية العالية: 120 ميغاجول للكيلوغرام، وهي ثلاث أضعاف القدرة الحرارية للبنزين.

ينتج عن تفاعل الهيدروجين مع الأكسجين تحرير كمية كبيرة من الحرارة (282 كيلو جول لكل جزيء من الهيدروجين المتكون من ذرتين )، ويُصاحب هذا التفاعل تكون الماء. وتصل حرارة اللهب الذي يكاد لا يرى عند احتراق الهيدروجين بأكسجين المتواجد بالهواء إلى 2318 كلفين، ورغم أن للهدروجين مجال واسع للاشتعال في الهواء، فإن خطورة اشتعاله تلقائيا أو انفجاره محدودتان. وهذا راجع إلى قدرته الكبيرة على الانتشار بسرعة في الهواء، فالهيدروجين يتسرب دائما في الهواء إلى الأعلى ويتقلص تركيزه بسرعة. ونظرا لصغر حجم جزيء الهدروجين، يمتاز بقدرة عالية على النفاد من خلال الأغشية والمواد ذات المسام ، وهذه الخاصية ترفع من كلفة نقله وخزنه وخاصة عند استعماله كوقود في وسائل النقل.

الجدول 1: بعض خصائص الهيدروجين

الكثافة الكتلية (kg/m3)

الكثافة الطاقية الكتلية (MJ/kg)

الكثافة الحجمية (MJ/l)

الكثافات

14,7

120,2

1,76

غاز الهيدروجين (160 bar)

71

120,2

8,4

الهيدروجين سائل (-253°C)

111

50

5,51

غاز الميتان (160 bar)

550

39,1

21,5

الميتان سائل (160 bar)

720

43

32,3

البنزين

الواقع الحالي لإنتاج واستعمال الهيدروجين

نظرا لعدم تواجد الهيدروجين غاز بالطبيعة فيستوجب توفير الطاقة اللازمة لتحريره من الجزيئات التي يدخل في تكونها. تحتل المصادر الاحفورية الصدارة من بين المصادر المستعملة في إنتاجه، يُنتج 96 في المائة من الهيدروجين عن طريق الكيمياء الحرارية، و منها 48 في المائة مكن الغاز الطبيعي و 30 في المائة عن طريق روفرماج للمواد الكربوهيدراتية، و 18 في المائة عن طريق تحويل الفحم إلى غاز أي ما يسمى بتغويز الفحم. و4 في المائة الباقية من إنتاج الهيدروجين يتم عن طريق التحليل الكهربائي للماء. ولقد وصل حجم الإنتاج العالمي من الهيدروجين سنة 2002 إلى 500 مليار متر مكعب تحت ظروف الضغط والحرارة العادية.

يلعب الهيدروجين دورا هاما في الصناعة الكيماوية والبتروكيماوية (إنتاج الامونياك والميتانول والأصباغ .. الخ)، حوالي 250 مليار متر مكعب في الظروف العادية. 50 في المائة من الطلب العالمي مخصص لإنتاج الامونياك، المادة الأولية في الصناعة الأسمدة. 37 في المائة من إنتاج الهيدروجين يستعمل في التكرير، 8 في المائة لإنتاج مواد كيماوية وخاصة والميتانول و4 في المائة يُُستعمل في التعدين وفي صناعة أنصاف الموصلات. فقط 1 في المائة من الإنتاج العالمي للهدروجين يستعمل في ميدان الطاقة وخاصة في الاستعمالات الفضائية.

الرسم 4: الواقع الحالي لتوزيع الإنتاج والاستعمال العالمي للهيدروجين

تتميز عملية الرفرماج للغاز الطبيعي من بين الوسائل الأخرى لإنتاج الهيدروجين بالكلفة المنخفضة، حوالي 9 دولار للجيغاجول (الرسم5)، ولا تمثل هذه الكلفة إلا 37,5 في المائة من كلفة إنتاج الهيدروجين عن طريق التحليل الكهربائي للماء، 24 دولار للجيغاجول حسب متوسط الأثمان العالمية للكهرباء. وتضاف كلفة التخزين، وكلفة النقل والتوزيع إلى كلفة الإنتاج عند استعمال الهيدروجين في النقل. وتصبح كلفته عند التوزيع مابين 26 و41 دولار للجيغاجول (الرسم 5).

الرسم 5: تقديرات لأثمان الهيدروجين عند التوزيع

IEP/Total/CEA/AFH2 (2002)

الإنتاج والاستعمال المستقبلي للهيدروجين كحامل طاقي

تُعرف المصادر الاحفورية بالمحدودية في مخزونها. واستعمالها المفرط له عواقب خطيرة على الإنسانية، والعودة للمصادر المتجددة لا تقاوم. في حين أغلب هذه المصادر الأخيرة غير متوفرة زمنيا بانتظام ويمكن نعتها بالمصادر الطاقية المتموقعة أي لا يمكن نقلها ولا تقييمها إلا في موقع توفرها، كما هو الحال للأشعة الشمسية، والرياح وطاقة الأمواج. تحويل هذه المصادر إلى كهرباء يُمكِّن من تقليص الفارق الزمني والمكاني بين العرض والطلب، ولكن يبقى اللجوء إلى نظام خزن كيماوي لازما ولا يمكن الاستغناء عليه. والحامل الطاقي المرشح من طرف العلميين والصناعيين لهذه المهمة الحيوية هو الهيدروجين.

وبما أن المصادر المتجددة ودائرة الهيدروجين من إنتاجه إلى استعماله لا يمثلان أي خطر على البيئة، وإنما يقدمان بدون شك إمكانية حل المشاكل البيئية الواقعة وإمكانية الاستقلال الطاقي التدريجي من المصادر الاحفورية وذلك بتمكين خزن الطاقة الشمسية في شكل طاقي كيماوي حتى يتسنى استعمالها في أشكال طاقية ثانوية أخرى في الزمان والمكان المطلوبين. فمن المنظور الذي يهدف إلى اعتماد الهيدروجين كحامل طاقي بتوافق بيئي شامل واحترام شروط التنمية المستدامة، فهنالك العديد من التصورات الممكنة والمدروسة بعمق. البعض منها وصل إلى مستوى تكنولوجي متقدم والبعض الآخر لازال في مرحلة التجارب بالمختبر. هناك فرعان رئيسيان لإنتاج الهدروجين بوفرة عالية وباستعمال الطاقات المتجددة (الحرارة الشمسية، الرياح التحويل الكهروضوئي والكتلة العضوية)، وهما التحليل الحراري للكتلة العضوية والتحليل الكهربائي للماء (الرسم 6).

يمكن لإنتاج الهيدروجين عن طريق التحلل الحراري أو التحويل بالكيمياء الحرارية للكتلة العضوية أن يستجيب لطلب محدود وموقعي على الهيدروجين كحامل طاقي. أما إنتاج الهيدروجين عن طريق التحلل الكهربائي للماء فهو جد واعد ما دام هذا الإنتاج يهدف إلى خزن الطاقة من أصل متجدد وغير منتظم في الإمداد. يُستعمل الفائض من الطاقة الكهربائية المنتجة بشكل وفير وغير منتظم في الزمان في إنتاج الهيدروجين وتخزينه لحين الحاجة إليه أو نقله إلى مكان الطلب.

الرسم 6 : طرق ووسائل إنتاج الهيدروجين الحامل الطاقي المستقبلي.

يشهد العالم حاليا تطورا مضطردا للقدرات المثبتة من طاقة الرياح، لقد تعدُّت سنة 2003 39000 ميغاواط. وتستعمل حاليا مروحات تتعدى قدرتها 1,5 ميغاواط للوحدة، وتُستعمل في تغطية طلب مجمعات سكنية وإنتاج أعلى من الطلب على الطاقة الكهربائية. في ما يخص الكهرباء من أصل شمسي، هناك العديد من التكنولوجيات لها الحظ في المساهمة في إنتاجها. فنسبة تطور القدرة المثبتة كل سنة من الطاقة الكهرضوئية في السنوات الأخيرة وصلت إلى 30 في المائة (الرسم 1). ولقد أظهرت من جهة أخرى مختلف التقنيات المعتمدة في المحطات الحرارية الشمسية نجاعتها التقنية. وتحقيق المشاريع من هذا النوع سيحسن بدون شك الكفاءة الاقتصادية لإنتاج الكهرباء من أصل شمسي. قدمت العديد من الدراسات تقديرات بخصوص كلفة إنتاج الهيدروجين باستعمال الكهرباء من أصل متجدد، بالإضافة لكلفة النقل والخزن والتوزيع، وتتفق كلها على هيمنت كلفة الطاقة الكهربائية المستعملة على الباقي، يقدم الرسم 7 هذه التقديرات مع مقارنة بين كميات انبعاث ثاني أكسيد الكربون الخاص بكل مسار إنتاج الهيدروجين.

الرسم 7: تقديرات أثمان الهيدروجين ونتائج انبعاث ثاني أكسيد الكربون لمختلف تقنيات الإنتاج

التوزيع والنقل المستقبلي للهدروجين.

لا يتعدى حاليا إنتاج الهيدروجين حاجيات محدودة، سواء كان إنتاجه في نفس مكان استعمال والخاص ببعض الصناعات التي تستهلك كميات كبيرة منه. يُنقل كذلك على شكل سائل في حاويات خاصة أو في شاحنات خزًّانة لمسافات قصيرة أو في باخرات خاصة لنقل الهيدروجين سائل لمسافات طويلة، ويظل نقل الهيدروجين مضغوط في حاويات للغاز مقتصرا بالخصوص على تغطية حاجيات المختبرات. ومن المنتظر أن تُستعمل القنوات الخاصة بنقل الغاز عبر الدول والقارات بشكل واسع، وأن تقوم بنقل الكميات الكبيرة من الهيدروجين غاز الذي ستُنتجها المركبات الشمسية في المستقبل. يوجد حاليا العديد من القنوات المستعملة لنقل غاز الأكسجين وغاز الآزوت وكذلك غاز الهيدروجين لمئات الكيلومترات، 1500 كيلومتر من هذه القنوات توجد بأوروبا و700 كيلومتر توجد بالولايات المتحدة. يقدم الرسم 8 شبكة نقل الهيدروجين والأكسجين الآزوت شمال أوربا.

الرسم 8: شبكة نقل الهيدروجين والأكسجين الآزوت شمال أوربا

التخزين في المنظومة المستقبلية لإنتاج وتوزيع الهيدروجين.

لكي نتمكن من الاستعمال الفعال للهيدروجين كحامل طاقي في المستقبل، فلابد من اعتماد نظام موثوق به وقادر على خزن الهدروجين دونما خطر تسربه وقادر على الاستجابة للمتطلبات الطاقية سواء من ناحية الجودة أو التكاليف. وتنكب حاليا مجموعات من فرق البحث على هذه المسألة التي رٌصد لها ميزانيات هامة ضمن برامج البحث والتطوير في هذا الميدان. فخزن الهيدروجين على العموم لا يطرح أي مشكل تقني أكثر من الغاز الطبيعي. إلا أن ضعف الكثافة الطاقية الحجمية لديه تعوق استعماله في حالته الغازية في وسائل النقل نظرا لكبر حجمه. واستعمال الهيدروجين سائل ينهي مشكلة الحجم، إلا أن التكلفة الطاقية لتسييل نفس كمية من الهيدروجين هي أكبر أربعة أضعاف منها عند ضغط الهيدروجين إلى 700 بار. فضغط الهيدروجين إلى 700 بار يستوجب 10 في المائة من الكمية الطاقية المتوفر عليها الغاز قبل ضغطه في حين يستوجب تسييل الغاز 40 في المائة من الطاقة الأصلية للغاز قبل تسييله. تقدم الصورة 9 سيارة (BMW 745i) في محطة تجريبية لتوزيع الهيدروجين وتعرض في جانبها الأيمن خزان الهيدروجين السائل.

يعتبر الخزن الكيماوي للهيدروجين في مواد هيدريدية عن طريق الامتصاص أو الخزن الفيزيائي عن طريق الامتزاز في كرويات دقيقة أو في مواد كربونية ذات بنيات مكونة من أوعية دقيقة ، من التقنيات الواعدة والمرشحة لأن تلعب دورا هاما في مجال تخزين الهيدروجين وخاصة في ما يخص استعماله في النقل. يقدم الرسم 10 مثال عن هاتين التقنيتين، ففي كلتا الحالتين يتضافر عاملان الحرارة والضغط لتحقيق العملية في الاتجاهين المتعاكسين خزن الهيدروجين عند توفره وتحريره عند الحاجة إليه، وتمتاز هاتان التقنيتان بمستوى عالي من الأمان.

الرسم 9 : سيارة (BMW 745i) وخزان الهيدروجين السائل

الرسم 10: تخزين الهيدروجين (ا) امتصاص، (ب) امتزاز

حقل استعمال الهيدروجين

زيادة على أن الهيدروجين قد استعمل مند أمد بعيد في العديد من الصناعات البتروكيماوية وصناعة المواد الكيماوية وخاصة إنتاج الامونياك، فيمكن استعمال الهيدروجين كوقود مستقبلي، ويمكن له أن يستجيب لمختلف الطلبات على الطاقة سواء كانت في شكل حرارة بعملية احتراق مباشر أو احتراق حفزي أو في شكل كهرباء باستعمال خلايا الاحتراق. حاليا يستعمل الهيدروجين كوقود في مجال الاستعمالات الفضائية.

لا زالت هنالك تحديات تقنية أمام استعمال الهيدروجين في مجال النقل ، كحجم هيدروجين في حالته الغازية والكلفة العالية لتخزينه. ويستعمل حاليا على شكل ساءل مما يخفض طبعا من حجم المخزون ولكن لازال مكلفا. ويحقق تسييل الهيدروجين حجم مقبول لا يتعدى 13 لتر للكيلوغرام ولمسافة 100 كيلومتر عند استعماله في السيارات. تقدم الصورة 11 تصويرا للأحجام مخزون نفس كمية من الهيدروجين 5 كيلوغرام ومقارنته مع الحجم الكلي للسيارة.

الرسم 11 : أحجام مخزون نفس كمية من الهيدروجين 5 كيلوغرام ومقارنته مع الحجم الكلي للسيارة

الواقع التكنولوجي لخلايا الاحتراق

قبل أن نتطرق لواقع تكنولوجيا خلايا الاحتراق، لا بد من تقديم الكهرباء، الحامل الطاقي ذو الجودة العالية، والذي يستجيب بشكل ممتاز إلى العديد من خصائص الطلب النهائي على الطاقة. ولهذا فالصناعة الكهربائية التي لم تنطلق إلا في أواخر القرن التاسع عشر، تستهلك حاليا حوالي 35 في المائة من الطاقة الأولية المتاجر بها على الصعيد العالمي. وتستعمل لهذا العديد من التكنولوجيات لتحويل الطاقات الأولية والثانوية إلى كهرباء، ويصل مردود المحطات الحرارية البخارية التي تنتج أكثر من 60 في المائة من الكهرباء في العالم إلى 35 في المائة. ومن المنتظر أن تزيد نسبة الطاقة الكهربائية في تغطية الطلب على الطاقة المستعملة، مع تحسين مردود الإنتاج وتقييم الطاقة الحرارية الناتجة.

تقدم تكنولوجيا خلايا الاحتراق فرصة الحصول على مستويات جيدة في مردود إنتاج الطاقة الكهربائية تصل إلى أزيد من 60 في المائة. وتُمكِّن كذلك من تقليص استهلاك المصادر الأولية مع إمكانية عالية في تقييم الطاقة الحرارية المنبعثة خلال إنتاج الكهرباء، وكل هذا مع الالتزام التام بالشروط البيئية المنشودة.

تعتبر خلايا الاحتراق أجهزة كهروكيماوية يتم بواسطتها تحويل مباشر للطاقة الكيماوية إلى طاقة كهربائية وطاقة حرارية، وذلك بمردود عالي، رغم أن اشتغال خلايا الاحتراق يمكن تشبيهه بالبطاريات الكيميائية إلا أن الفرق يكمن في أن المحروقات تتواجد داخل البطاريات في حين يتم إمداد خلايا الاحتراق بالوقود كما هو الحال بمحركات الاحتراق. يُستعمل الهيدروجين على العموم كوقود بهذه الخلايا. يقدم الرسم 12 شكل خلايا الاحتراق.

الرسم 12 خلايا الاحتراق

مزايا خلايا الاحتراق

المزايا التي تتمتع بها خلايا الاحتراق بمقارنتها بأنظمة تقليدية لإنتاج الطاقة الكهربائية متعددة:

- تسمح خلايا الاحتراق بإنتاج قار ووفير للطاقة الكهربائية حسب الطلب،

- تمتاز هذه الخلايا بمرونة عالية في الاستعمال،

- إمكانية التدرج في القدرات المثبتة بمجرد تثبيت قدرات إضافية إلى الخلايا المستقبلة،

- إمكانية استعمال الحرارة الناتجة في ما يسمى بالإنتاج المشترك مما يرفع من كفاءة النظام،

- لا يصاحب إنتاج الكهرباء بخلايا الاحتراق أي انبعاث لغازات ملوثة عند استعمال الهيدروجين،

- تعتبر كفاءة اشتغال خلايا الاحتراق من أعلى كفاءات تحويل الطاقة الأولية إلى الطاقة الكهربائية،

- لا توجد أي أجزاء في خلايا الاحتراق تتطلب حركة مما يحد من كلفة الصيانة،

- استعمال واسع في البرامج الفضائية،

- بما أن اشتغال خلايا الاحتراق لا يصاحبه أي ضجيج، فإن هذا النظام يستعمل بامتياز في الغواصات،

- إمكانية الاستجابة لكل مستويات الطلب على الطاقة، من الاستعمال المتنقل (الهواتف والحواسب)

والقارة (المجموعات السكنية والمعامل) أو المتنقلة كما سبق( السيارات والشاحنات).

- إمكانية خفض كلفة إنتاج شاملة لكل أجزاء خلايا الاحتراق، ومن المنتظر أن تطل كلفة الكيلووات متبث إلى 800 دولار (الرسم 13).

الرسم 13: تطور كلفة الأجزاء المكونة لخلايا الاحتراق

تطور استعمال خلايا الاحتراق

إذا كانت الاستعمالات التقنية للهيدروجين من خزن ونقل وتوزيع في العديد من المجالات تشكل موضوعات بحث وتطوير مند أمد بعيد، فإن الأبحاث المركزة والمدعمة ببرامج جادة لم تنطلق إلا في مطلع السبعينات من القرن السابق، وكان ذلك طبعا في اتجاه استعماله كبديل للحوامل الطاقية المستعملة. يقدم الرسم 14 التطور الحاصل في هذا الميدان.

الرسم 14: تطور استعمال الهيدروجين بخلايا الاحتراق انطلاقا من الستينات

وهكذا تطورت المعرفة واغتنت في هذا المجال، ونشهد في السنوات الأخيرة تطور في نوعية البرامج الدولية المطروحة، يقدم الرسم 15 البرنامج الأوروبي الذي يطمح إلى جعل الهيدروجين البديل المستقبلي في الميادين الطاقية. ويقدم الجدول 2 مختلف التكنولوجيات التي من المنتظر أن تؤدي دورها في جعل هذه البرامج تتحقق على أرض الواقع وجعل دخول الهيدروجين في الاقتصاد العالمي لا يقاوم.

الرسم 15 : البرنامج الأوروبي للهيدروجين البديل المستقبلي في الميادين الطاقية

الجدول 2: تكنولوجيات إنتاج واستعمال الهيدروجين

روفرماج للميتانول

تغييز الفحم

تغييز الكتلة العضوية

التحليل الحراري للكتلة العضوية

التحليل الكهربائي للماء

تكنولوجيات إنتاج الهيدروجين

ضغط غاز الهيدروجين

تسييل الهيدروجين

خزن في المواد الهيدريدية

الخزن عن طريق الامتزاز

تقنيات خزن الهيدروجين

قنوات لنقل الغاز

النقل بحاويات قابلة للشحن

النقل بالبواخر

النقل عبر السكك الحديدية

وسائل نقل الهيدروجين

AFC (خلايا تستعمل محلول قلوي كإلكتروليت),

PEMFC (خلايا تستعمل أغشية بلميرية كإلكتروليت),

DMFC (خلايا تشتغل مباشرة بالميتانول),

PAFC (خلايا تشتغل بالحمض الفسفوري),

MCFC (خلايا تستعمل الكربونات الدائبة),

SOFC (خلايا تستعمل المواد الصلبة كإلكتروليت).

تربينات غازية

محرك احتراق داخلي

انتاج الطاقة

سيارات تعمل بالهيدروجين وخلايا الاحتراق

احتراق الهيدروجين مباشرة في محركات خاصة

الاستعمالات في مجال النقل

المصادر

Vers un Maroc Exportateur d'Energie. A. Bennouna ; Ouvrage publié en 1994 en langue Arabe.

Hydrogène solaire : Vecteur d’énergie de l’avenir ; R. Benchrifa, D. Zejli et A. Bennouna, L’ESPACE MAROCAINE, Magazine Scientifique : Nouvelle Dynamique, n°5, pp 42 – 45 1992.

Energie matière première : L’hydrogène comme vecteur énergétique : concurrence ou complémentarité avec les combustibles fossiles ; n° 20 ; pp 9 – 16 ; 2ème trimestre 2002.

Science and Technology of Ceramic Fuel Cells, Nguyen Quang minh and takehiko takahashi, Elsevier, 1995.

Fuel Cells in Energy Market, Proceedings , Energies Forum ; Köln, mars 1996

Fuel Cell Handbook (Fifth Edition) ; Science Applications International Corporation ; National Energy Technology Laboratory ; October 2000.